Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
A
AI Tutor
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Salma Mohammed Hamed
AI Tutor
Commits
95189ab5
Commit
95189ab5
authored
Sep 15, 2025
by
Salma Mohammed Hamed
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Delete generate_embeddings.py
parent
7446c2b4
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
137 deletions
+0
-137
generate_embeddings.py
self_hosted_env/generate_embeddings.py
+0
-137
No files found.
self_hosted_env/generate_embeddings.py
deleted
100644 → 0
View file @
7446c2b4
import
pandas
as
pd
import
numpy
as
np
import
os
import
re
from
openai
import
OpenAI
from
typing
import
List
import
csv
import
json
from
dotenv
import
load_dotenv
load_dotenv
()
class
EducationalContentProcessor
:
def
__init__
(
self
,
api_key
:
str
=
None
):
if
api_key
is
None
:
api_key
=
os
.
getenv
(
'OPENAI_API_KEY'
)
if
not
api_key
:
raise
ValueError
(
"OpenAI API key is required. Set OPENAI_API_KEY environment variable or pass api_key parameter."
)
self
.
client
=
OpenAI
(
api_key
=
api_key
)
self
.
embedding_model
=
"text-embedding-3-small"
def
chunk_text
(
self
,
text
:
str
,
chunk_size
:
int
=
500
)
->
List
[
str
]:
if
not
text
or
pd
.
isna
(
text
):
return
[
""
]
text
=
str
(
text
)
.
strip
()
if
not
text
:
return
[
""
]
sentences
=
re
.
split
(
r'(?<=[.!؟])\s+'
,
text
)
chunks
=
[]
current_chunk
=
[]
current_word_count
=
0
for
sentence
in
sentences
:
sentence_words
=
len
(
sentence
.
split
())
if
current_word_count
+
sentence_words
>
chunk_size
and
current_chunk
:
chunks
.
append
(
' '
.
join
(
current_chunk
))
current_chunk
=
[
sentence
]
current_word_count
=
sentence_words
else
:
current_chunk
.
append
(
sentence
)
current_word_count
+=
sentence_words
if
current_chunk
:
chunks
.
append
(
' '
.
join
(
current_chunk
))
return
chunks
if
chunks
else
[
""
]
def
get_embedding
(
self
,
text
:
str
)
->
List
[
float
]:
try
:
text
=
str
(
text
)
.
strip
()
if
not
text
:
text
=
"empty"
response
=
self
.
client
.
embeddings
.
create
(
model
=
self
.
embedding_model
,
input
=
text
,
encoding_format
=
"float"
)
return
response
.
data
[
0
]
.
embedding
except
Exception
as
e
:
print
(
f
"Error generating embedding: {str(e)}"
)
return
[
0.0
]
*
1536
# vector placeholder
def
process_csv
(
self
,
input_file
:
str
,
output_file
:
str
,
chunk_size
:
int
=
500
,
grade
:
int
=
None
,
subject
:
str
=
None
):
print
(
f
"Reading CSV file: {input_file}"
)
try
:
df
=
pd
.
read_csv
(
input_file
)
column_mapping
=
{
"الوحدة"
:
"Unit"
,
"المفهوم"
:
"Concept"
,
"الدرس"
:
"Lesson"
,
"من صفحة"
:
"From page"
,
"إلى صفحة"
:
"To page"
,
"النص"
:
"Lesson text"
,
}
df
.
rename
(
columns
=
column_mapping
,
inplace
=
True
)
required_columns
=
[
'Unit'
,
'Concept'
,
'Lesson'
,
'From page'
,
'To page'
,
'Lesson text'
]
missing_columns
=
[
col
for
col
in
required_columns
if
col
not
in
df
.
columns
]
if
missing_columns
:
raise
ValueError
(
f
"Missing required columns: {missing_columns}"
)
print
(
f
"Found {len(df)} rows in input file"
)
output_rows
=
[]
for
idx
,
row
in
df
.
iterrows
():
print
(
f
"Processing row {idx + 1}/{len(df)}: {row['Unit']} - {row['Concept']} - {row['Lesson']}"
)
lesson_text
=
row
[
'Lesson text'
]
chunks
=
self
.
chunk_text
(
lesson_text
,
chunk_size
)
print
(
f
" Created {len(chunks)} chunks"
)
for
chunk_idx
,
chunk_text
in
enumerate
(
chunks
):
print
(
f
" Generating embedding for chunk {chunk_idx + 1}/{len(chunks)}"
)
embedding
=
self
.
get_embedding
(
chunk_text
)
output_row
=
{
'Grade'
:
grade
if
grade
is
not
None
else
row
.
get
(
'Grade'
,
None
),
'Subject'
:
subject
if
subject
is
not
None
else
row
.
get
(
'Subject'
,
None
),
'Unit'
:
row
[
'Unit'
],
'Concept'
:
row
[
'Concept'
],
'Lesson'
:
row
[
'Lesson'
],
'From page'
:
row
[
'From page'
],
'To page'
:
row
[
'To page'
],
'Chunk index'
:
chunk_idx
,
'Chunk text'
:
chunk_text
,
'Is Arabic'
:
False
,
'Embedding'
:
json
.
dumps
(
embedding
)
}
output_rows
.
append
(
output_row
)
print
(
f
"Saving {len(output_rows)} chunks to {output_file}"
)
output_df
=
pd
.
DataFrame
(
output_rows
)
output_df
.
to_csv
(
output_file
,
index
=
False
,
quoting
=
csv
.
QUOTE_MINIMAL
)
print
(
"Processing complete!"
)
except
Exception
as
e
:
print
(
f
"Error processing file: {str(e)}"
)
raise
def
main
():
processor
=
EducationalContentProcessor
()
input_file
=
r"../Data/english/prime6/output_units_lessons_prime6_EN.csv"
output_file
=
"Prime6_en_chunked_with_embeddings.csv"
processor
.
process_csv
(
input_file
,
output_file
,
chunk_size
=
500
,
grade
=
"prime6"
,
subject
=
"Science"
)
if
__name__
==
"__main__"
:
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment