Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
A
AI Tutor
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Salma Mohammed Hamed
AI Tutor
Commits
7914aadf
Commit
7914aadf
authored
Sep 15, 2025
by
Salma Mohammed Hamed
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Delete generate_embeddings_ar.py
parent
95189ab5
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
156 deletions
+0
-156
generate_embeddings_ar.py
self_hosted_env/generate_embeddings_ar.py
+0
-156
No files found.
self_hosted_env/generate_embeddings_ar.py
deleted
100644 → 0
View file @
95189ab5
import
pandas
as
pd
import
numpy
as
np
import
os
import
re
from
openai
import
OpenAI
from
typing
import
List
import
csv
import
json
class
EducationalContentProcessor
:
def
__init__
(
self
,
api_key
:
str
=
None
):
if
api_key
is
None
:
api_key
=
os
.
getenv
(
'OPENAI_API_KEY'
)
if
not
api_key
:
raise
ValueError
(
"OpenAI API key is required. Set OPENAI_API_KEY in .env or pass api_key parameter."
)
self
.
client
=
OpenAI
(
api_key
=
api_key
)
self
.
embedding_model
=
"text-embedding-3-small"
def
chunk_text
(
self
,
text
:
str
,
chunk_size
:
int
=
500
,
is_arabic
:
bool
=
False
)
->
List
[
str
]:
if
not
text
or
pd
.
isna
(
text
):
return
[
""
]
text
=
str
(
text
)
.
strip
()
if
not
text
:
return
[
""
]
if
is_arabic
:
sentence_pattern
=
r'(?<=[.!?؟])\s+'
else
:
sentence_pattern
=
r'(?<=[.!?])\s+'
sentences
=
re
.
split
(
sentence_pattern
,
text
)
chunks
,
current_chunk
,
current_word_count
=
[],
[],
0
for
sentence
in
sentences
:
sentence_words
=
len
([
w
for
w
in
sentence
.
split
()
if
w
.
strip
()])
if
current_word_count
+
sentence_words
>
chunk_size
and
current_chunk
:
chunks
.
append
(
' '
.
join
(
current_chunk
))
current_chunk
=
[
sentence
]
current_word_count
=
sentence_words
else
:
current_chunk
.
append
(
sentence
)
current_word_count
+=
sentence_words
if
current_chunk
:
chunks
.
append
(
' '
.
join
(
current_chunk
))
return
chunks
if
chunks
else
[
""
]
def
get_embedding
(
self
,
text
:
str
)
->
List
[
float
]:
try
:
text
=
str
(
text
)
.
strip
()
if
not
text
:
text
=
"empty"
response
=
self
.
client
.
embeddings
.
create
(
model
=
self
.
embedding_model
,
input
=
text
,
encoding_format
=
"float"
)
return
response
.
data
[
0
]
.
embedding
except
Exception
as
e
:
print
(
f
"Error generating embedding: {str(e)}"
)
return
[
0.0
]
*
1536
def
detect_arabic_text
(
self
,
text
:
str
)
->
bool
:
if
not
text
or
pd
.
isna
(
text
):
return
False
text
=
str
(
text
)
arabic_chars
,
total_chars
=
0
,
0
for
char
in
text
:
if
char
.
strip
():
total_chars
+=
1
if
(
'
\u0600
'
<=
char
<=
'
\u06FF
'
)
or
(
'
\u0750
'
<=
char
<=
'
\u077F
'
)
\
or
(
'
\u08A0
'
<=
char
<=
'
\u08FF
'
)
or
(
'
\uFB50
'
<=
char
<=
'
\uFDFF
'
)
\
or
(
'
\uFE70
'
<=
char
<=
'
\uFEFF
'
):
arabic_chars
+=
1
return
total_chars
>
0
and
(
arabic_chars
/
total_chars
)
>
0.3
def
process_csv
(
self
,
input_file
:
str
,
output_file
:
str
,
subject
:
str
,
grade
:
int
,
chunk_size
:
int
=
500
,
is_arabic
:
bool
=
None
):
print
(
f
"Reading CSV file: {input_file}"
)
try
:
df
=
pd
.
read_csv
(
input_file
,
encoding
=
"utf-8"
)
column_map
=
{
"Unit"
:
[
"Unit"
,
"الوحدة"
],
"Concept"
:
[
"Concept"
,
"المفهوم"
],
"Lesson"
:
[
"Lesson"
,
"الدرس"
],
"From page"
:
[
"From page"
,
"من صفحة"
],
"To page"
:
[
"To page"
,
"إلى صفحة"
],
"Lesson text"
:
[
"Lesson text"
,
"النص"
]
}
normalized
=
{}
for
std_name
,
aliases
in
column_map
.
items
():
for
alias
in
aliases
:
if
alias
in
df
.
columns
:
normalized
[
std_name
]
=
df
[
alias
]
break
if
std_name
not
in
normalized
:
normalized
[
std_name
]
=
""
norm_df
=
pd
.
DataFrame
(
normalized
)
print
(
f
"Found {len(norm_df)} rows in input file"
)
output_rows
=
[]
for
idx
,
row
in
norm_df
.
iterrows
():
print
(
f
"Processing row {idx+1}/{len(norm_df)}: {row['Unit']} - {row['Concept']} - {row['Lesson']}"
)
lesson_text
=
row
[
"Lesson text"
]
if
is_arabic
is
None
:
text_is_arabic
=
self
.
detect_arabic_text
(
lesson_text
)
else
:
text_is_arabic
=
is_arabic
chunks
=
self
.
chunk_text
(
lesson_text
,
chunk_size
,
is_arabic
=
text_is_arabic
)
print
(
f
" Created {len(chunks)} chunks"
)
for
chunk_idx
,
chunk_text
in
enumerate
(
chunks
):
print
(
f
" Generating embedding for chunk {chunk_idx+1}/{len(chunks)}"
)
embedding
=
self
.
get_embedding
(
chunk_text
)
output_rows
.
append
({
"Grade"
:
grade
,
"Subject"
:
subject
,
"Unit"
:
row
[
"Unit"
],
"Concept"
:
row
[
"Concept"
],
"Lesson"
:
row
[
"Lesson"
],
"From page"
:
row
[
"From page"
],
"To page"
:
row
[
"To page"
],
"Chunk index"
:
chunk_idx
,
"Chunk text"
:
chunk_text
,
"Is Arabic"
:
text_is_arabic
,
"Embedding"
:
json
.
dumps
(
embedding
)
})
output_df
=
pd
.
DataFrame
(
output_rows
)
output_df
.
to_csv
(
output_file
,
index
=
False
,
quoting
=
csv
.
QUOTE_MINIMAL
,
encoding
=
"utf-8"
)
print
(
f
"Processing complete! Saved {len(output_rows)} chunks to {output_file}"
)
except
Exception
as
e
:
print
(
f
"Error processing file: {str(e)}"
)
raise
def
main
():
processor
=
EducationalContentProcessor
()
input_file
=
r"../Data/arabic/prime4/output_units_lessons_prime4.csv"
output_file
=
"prime4_ar_embeddings.csv"
processor
.
process_csv
(
input_file
,
output_file
,
chunk_size
=
500
,
grade
=
"prime4"
,
subject
=
"Science"
)
if
__name__
==
"__main__"
:
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment