Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
A
AI Tutor
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Salma Mohammed Hamed
AI Tutor
Commits
3d886bb2
Commit
3d886bb2
authored
Sep 15, 2025
by
arwa mohamed
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add embedding scripts with Arabic/English support
parent
91855fed
Changes
7
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
608 additions
and
66 deletions
+608
-66
Prime5_en_chunked_with_embeddings.csv
self_hosted_env/Prime5_en_chunked_with_embeddings.csv
+64
-0
Prime6_en_chunked_with_embeddings.csv
self_hosted_env/Prime6_en_chunked_with_embeddings.csv
+75
-0
generate_embeddings.py
self_hosted_env/generate_embeddings.py
+128
-66
generate_embeddings_ar.py
self_hosted_env/generate_embeddings_ar.py
+156
-0
insert_csv_embeddings.py
self_hosted_env/insert_csv_embeddings.py
+82
-0
prime4_ar_embeddings.csv
self_hosted_env/prime4_ar_embeddings.csv
+48
-0
prime6_ar_embeddings.csv
self_hosted_env/prime6_ar_embeddings.csv
+55
-0
No files found.
self_hosted_env/Prime5_en_chunked_with_embeddings.csv
0 → 100644
View file @
3d886bb2
This diff is collapsed.
Click to expand it.
self_hosted_env/Prime6_en_chunked_with_embeddings.csv
0 → 100644
View file @
3d886bb2
This diff is collapsed.
Click to expand it.
self_hosted_env/generate_embeddings.py
View file @
3d886bb2
import
pandas
as
pd
import
numpy
as
np
import
os
import
os
import
psycopg2
import
re
import
openai
from
openai
import
OpenAI
from
psycopg2.extras
import
execute_values
from
typing
import
List
import
csv
import
json
from
dotenv
import
load_dotenv
from
dotenv
import
load_dotenv
load_dotenv
()
load_dotenv
()
openai
.
api_key
=
os
.
getenv
(
"OPENAI_API_KEY"
)
def
get_db_connection
():
return
psycopg2
.
connect
(
dbname
=
os
.
getenv
(
"POSTGRES_DB"
,
"embeddings_db"
),
user
=
os
.
getenv
(
"POSTGRES_USER"
,
"db_admin"
),
password
=
os
.
getenv
(
"POSTGRES_PASSWORD"
),
host
=
os
.
getenv
(
"POSTGRES_HOST"
,
"localhost"
),
port
=
os
.
getenv
(
"POSTGRES_PORT"
,
5432
)
)
def
chunk_text
(
text
,
chunk_size
=
500
,
overlap
=
50
):
class
EducationalContentProcessor
:
def
__init__
(
self
,
api_key
:
str
=
None
):
if
api_key
is
None
:
api_key
=
os
.
getenv
(
'OPENAI_API_KEY'
)
if
not
api_key
:
raise
ValueError
(
"OpenAI API key is required. Set OPENAI_API_KEY environment variable or pass api_key parameter."
)
self
.
client
=
OpenAI
(
api_key
=
api_key
)
self
.
embedding_model
=
"text-embedding-3-small"
def
chunk_text
(
self
,
text
:
str
,
chunk_size
:
int
=
500
)
->
List
[
str
]:
if
not
text
or
pd
.
isna
(
text
):
return
[
""
]
text
=
str
(
text
)
.
strip
()
if
not
text
:
return
[
""
]
sentences
=
re
.
split
(
r'(?<=[.!؟])\s+'
,
text
)
chunks
=
[]
chunks
=
[]
start
=
0
current_chunk
=
[]
while
start
<
len
(
text
):
current_word_count
=
0
end
=
min
(
len
(
text
),
start
+
chunk_size
)
chunks
.
append
(
text
[
start
:
end
])
for
sentence
in
sentences
:
start
=
end
-
overlap
sentence_words
=
len
(
sentence
.
split
())
if
start
<
0
:
if
current_word_count
+
sentence_words
>
chunk_size
and
current_chunk
:
start
=
0
chunks
.
append
(
' '
.
join
(
current_chunk
))
return
chunks
current_chunk
=
[
sentence
]
current_word_count
=
sentence_words
def
get_embedding
(
text
):
else
:
response
=
openai
.
embeddings
.
create
(
current_chunk
.
append
(
sentence
)
model
=
"text-embedding-3-small"
,
current_word_count
+=
sentence_words
input
=
text
if
current_chunk
:
chunks
.
append
(
' '
.
join
(
current_chunk
))
return
chunks
if
chunks
else
[
""
]
def
get_embedding
(
self
,
text
:
str
)
->
List
[
float
]:
try
:
text
=
str
(
text
)
.
strip
()
if
not
text
:
text
=
"empty"
response
=
self
.
client
.
embeddings
.
create
(
model
=
self
.
embedding_model
,
input
=
text
,
encoding_format
=
"float"
)
)
return
response
.
data
[
0
]
.
embedding
return
response
.
data
[
0
]
.
embedding
except
Exception
as
e
:
print
(
f
"Error generating embedding: {str(e)}"
)
return
[
0.0
]
*
1536
# vector placeholder
def
process_csv
(
self
,
input_file
:
str
,
output_file
:
str
,
chunk_size
:
int
=
500
,
grade
:
int
=
None
,
subject
:
str
=
None
):
print
(
f
"Reading CSV file: {input_file}"
)
try
:
df
=
pd
.
read_csv
(
input_file
)
column_mapping
=
{
"الوحدة"
:
"Unit"
,
"المفهوم"
:
"Concept"
,
"الدرس"
:
"Lesson"
,
"من صفحة"
:
"From page"
,
"إلى صفحة"
:
"To page"
,
"النص"
:
"Lesson text"
,
}
df
.
rename
(
columns
=
column_mapping
,
inplace
=
True
)
required_columns
=
[
'Unit'
,
'Concept'
,
'Lesson'
,
'From page'
,
'To page'
,
'Lesson text'
]
missing_columns
=
[
col
for
col
in
required_columns
if
col
not
in
df
.
columns
]
if
missing_columns
:
raise
ValueError
(
f
"Missing required columns: {missing_columns}"
)
print
(
f
"Found {len(df)} rows in input file"
)
output_rows
=
[]
for
idx
,
row
in
df
.
iterrows
():
print
(
f
"Processing row {idx + 1}/{len(df)}: {row['Unit']} - {row['Concept']} - {row['Lesson']}"
)
lesson_text
=
row
[
'Lesson text'
]
chunks
=
self
.
chunk_text
(
lesson_text
,
chunk_size
)
print
(
f
" Created {len(chunks)} chunks"
)
for
chunk_idx
,
chunk_text
in
enumerate
(
chunks
):
print
(
f
" Generating embedding for chunk {chunk_idx + 1}/{len(chunks)}"
)
embedding
=
self
.
get_embedding
(
chunk_text
)
output_row
=
{
'Grade'
:
grade
if
grade
is
not
None
else
row
.
get
(
'Grade'
,
None
),
'Subject'
:
subject
if
subject
is
not
None
else
row
.
get
(
'Subject'
,
None
),
'Unit'
:
row
[
'Unit'
],
'Concept'
:
row
[
'Concept'
],
'Lesson'
:
row
[
'Lesson'
],
'From page'
:
row
[
'From page'
],
'To page'
:
row
[
'To page'
],
'Chunk index'
:
chunk_idx
,
'Chunk text'
:
chunk_text
,
'Is Arabic'
:
False
,
'Embedding'
:
json
.
dumps
(
embedding
)
}
output_rows
.
append
(
output_row
)
print
(
f
"Saving {len(output_rows)} chunks to {output_file}"
)
output_df
=
pd
.
DataFrame
(
output_rows
)
output_df
.
to_csv
(
output_file
,
index
=
False
,
quoting
=
csv
.
QUOTE_MINIMAL
)
print
(
"Processing complete!"
)
except
Exception
as
e
:
print
(
f
"Error processing file: {str(e)}"
)
raise
def
main
():
def
main
():
conn
=
get_db_connection
()
processor
=
EducationalContentProcessor
()
cur
=
conn
.
cursor
()
input_file
=
r"../Data/english/prime6/output_units_lessons_prime6_EN.csv"
output_file
=
"Prime6_en_chunked_with_embeddings.csv"
print
(
"Fetching lessons..."
)
cur
.
execute
(
"SELECT id, lesson_text FROM lessons WHERE lesson_text IS NOT NULL;"
)
processor
.
process_csv
(
input_file
,
output_file
,
chunk_size
=
500
,
grade
=
"prime6"
,
subject
=
"Science"
)
lessons
=
cur
.
fetchall
()
total_lessons
=
len
(
lessons
)
print
(
f
"Found {total_lessons} lessons to process."
)
all_rows
=
[]
for
idx
,
(
lesson_id
,
lesson_text
)
in
enumerate
(
lessons
,
start
=
1
):
chunks
=
chunk_text
(
lesson_text
,
chunk_size
=
500
,
overlap
=
50
)
for
i
,
chunk
in
enumerate
(
chunks
):
embedding
=
get_embedding
(
chunk
)
all_rows
.
append
((
lesson_id
,
i
,
chunk
,
embedding
))
progress
=
(
idx
/
total_lessons
)
*
100
print
(
f
"Lesson {idx}/{total_lessons} complete ({progress:.2f}
%
done, {len(chunks)} chunks)"
)
# وقف بعد أول درسين للتجربة
if
idx
==
2
:
print
(
"Stopping after first 2 lessons (test mode)."
)
break
if
all_rows
:
query
=
"""
INSERT INTO lesson_embeddings (lesson_id, chunk_index, chunk_text, embedding)
VALUES
%
s
"""
execute_values
(
cur
,
query
,
all_rows
)
conn
.
commit
()
cur
.
close
()
conn
.
close
()
print
(
f
"Inserted {len(all_rows)} embeddings into the database."
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
main
()
main
()
self_hosted_env/generate_embeddings_ar.py
0 → 100644
View file @
3d886bb2
import
pandas
as
pd
import
numpy
as
np
import
os
import
re
from
openai
import
OpenAI
from
typing
import
List
import
csv
import
json
class
EducationalContentProcessor
:
def
__init__
(
self
,
api_key
:
str
=
None
):
if
api_key
is
None
:
api_key
=
os
.
getenv
(
'OPENAI_API_KEY'
)
if
not
api_key
:
raise
ValueError
(
"OpenAI API key is required. Set OPENAI_API_KEY in .env or pass api_key parameter."
)
self
.
client
=
OpenAI
(
api_key
=
api_key
)
self
.
embedding_model
=
"text-embedding-3-small"
def
chunk_text
(
self
,
text
:
str
,
chunk_size
:
int
=
500
,
is_arabic
:
bool
=
False
)
->
List
[
str
]:
if
not
text
or
pd
.
isna
(
text
):
return
[
""
]
text
=
str
(
text
)
.
strip
()
if
not
text
:
return
[
""
]
if
is_arabic
:
sentence_pattern
=
r'(?<=[.!?؟])\s+'
else
:
sentence_pattern
=
r'(?<=[.!?])\s+'
sentences
=
re
.
split
(
sentence_pattern
,
text
)
chunks
,
current_chunk
,
current_word_count
=
[],
[],
0
for
sentence
in
sentences
:
sentence_words
=
len
([
w
for
w
in
sentence
.
split
()
if
w
.
strip
()])
if
current_word_count
+
sentence_words
>
chunk_size
and
current_chunk
:
chunks
.
append
(
' '
.
join
(
current_chunk
))
current_chunk
=
[
sentence
]
current_word_count
=
sentence_words
else
:
current_chunk
.
append
(
sentence
)
current_word_count
+=
sentence_words
if
current_chunk
:
chunks
.
append
(
' '
.
join
(
current_chunk
))
return
chunks
if
chunks
else
[
""
]
def
get_embedding
(
self
,
text
:
str
)
->
List
[
float
]:
try
:
text
=
str
(
text
)
.
strip
()
if
not
text
:
text
=
"empty"
response
=
self
.
client
.
embeddings
.
create
(
model
=
self
.
embedding_model
,
input
=
text
,
encoding_format
=
"float"
)
return
response
.
data
[
0
]
.
embedding
except
Exception
as
e
:
print
(
f
"Error generating embedding: {str(e)}"
)
return
[
0.0
]
*
1536
def
detect_arabic_text
(
self
,
text
:
str
)
->
bool
:
if
not
text
or
pd
.
isna
(
text
):
return
False
text
=
str
(
text
)
arabic_chars
,
total_chars
=
0
,
0
for
char
in
text
:
if
char
.
strip
():
total_chars
+=
1
if
(
'
\u0600
'
<=
char
<=
'
\u06FF
'
)
or
(
'
\u0750
'
<=
char
<=
'
\u077F
'
)
\
or
(
'
\u08A0
'
<=
char
<=
'
\u08FF
'
)
or
(
'
\uFB50
'
<=
char
<=
'
\uFDFF
'
)
\
or
(
'
\uFE70
'
<=
char
<=
'
\uFEFF
'
):
arabic_chars
+=
1
return
total_chars
>
0
and
(
arabic_chars
/
total_chars
)
>
0.3
def
process_csv
(
self
,
input_file
:
str
,
output_file
:
str
,
subject
:
str
,
grade
:
int
,
chunk_size
:
int
=
500
,
is_arabic
:
bool
=
None
):
print
(
f
"Reading CSV file: {input_file}"
)
try
:
df
=
pd
.
read_csv
(
input_file
,
encoding
=
"utf-8"
)
column_map
=
{
"Unit"
:
[
"Unit"
,
"الوحدة"
],
"Concept"
:
[
"Concept"
,
"المفهوم"
],
"Lesson"
:
[
"Lesson"
,
"الدرس"
],
"From page"
:
[
"From page"
,
"من صفحة"
],
"To page"
:
[
"To page"
,
"إلى صفحة"
],
"Lesson text"
:
[
"Lesson text"
,
"النص"
]
}
normalized
=
{}
for
std_name
,
aliases
in
column_map
.
items
():
for
alias
in
aliases
:
if
alias
in
df
.
columns
:
normalized
[
std_name
]
=
df
[
alias
]
break
if
std_name
not
in
normalized
:
normalized
[
std_name
]
=
""
norm_df
=
pd
.
DataFrame
(
normalized
)
print
(
f
"Found {len(norm_df)} rows in input file"
)
output_rows
=
[]
for
idx
,
row
in
norm_df
.
iterrows
():
print
(
f
"Processing row {idx+1}/{len(norm_df)}: {row['Unit']} - {row['Concept']} - {row['Lesson']}"
)
lesson_text
=
row
[
"Lesson text"
]
if
is_arabic
is
None
:
text_is_arabic
=
self
.
detect_arabic_text
(
lesson_text
)
else
:
text_is_arabic
=
is_arabic
chunks
=
self
.
chunk_text
(
lesson_text
,
chunk_size
,
is_arabic
=
text_is_arabic
)
print
(
f
" Created {len(chunks)} chunks"
)
for
chunk_idx
,
chunk_text
in
enumerate
(
chunks
):
print
(
f
" Generating embedding for chunk {chunk_idx+1}/{len(chunks)}"
)
embedding
=
self
.
get_embedding
(
chunk_text
)
output_rows
.
append
({
"Grade"
:
grade
,
"Subject"
:
subject
,
"Unit"
:
row
[
"Unit"
],
"Concept"
:
row
[
"Concept"
],
"Lesson"
:
row
[
"Lesson"
],
"From page"
:
row
[
"From page"
],
"To page"
:
row
[
"To page"
],
"Chunk index"
:
chunk_idx
,
"Chunk text"
:
chunk_text
,
"Is Arabic"
:
text_is_arabic
,
"Embedding"
:
json
.
dumps
(
embedding
)
})
output_df
=
pd
.
DataFrame
(
output_rows
)
output_df
.
to_csv
(
output_file
,
index
=
False
,
quoting
=
csv
.
QUOTE_MINIMAL
,
encoding
=
"utf-8"
)
print
(
f
"Processing complete! Saved {len(output_rows)} chunks to {output_file}"
)
except
Exception
as
e
:
print
(
f
"Error processing file: {str(e)}"
)
raise
def
main
():
processor
=
EducationalContentProcessor
()
input_file
=
r"../Data/arabic/prime4/output_units_lessons_prime4.csv"
output_file
=
"prime4_ar_embeddings.csv"
processor
.
process_csv
(
input_file
,
output_file
,
chunk_size
=
500
,
grade
=
"prime4"
,
subject
=
"Science"
)
if
__name__
==
"__main__"
:
main
()
self_hosted_env/insert_csv_embeddings.py
0 → 100644
View file @
3d886bb2
import
os
import
psycopg2
import
pandas
as
pd
import
json
from
dotenv
import
load_dotenv
load_dotenv
()
def
get_db_connection
():
return
psycopg2
.
connect
(
dbname
=
os
.
getenv
(
"POSTGRES_DB"
,
"embeddings_db"
),
user
=
os
.
getenv
(
"POSTGRES_USER"
,
"db_admin"
),
password
=
os
.
getenv
(
"POSTGRES_PASSWORD"
),
host
=
os
.
getenv
(
"POSTGRES_HOST"
,
"localhost"
),
port
=
os
.
getenv
(
"POSTGRES_PORT"
,
5432
)
)
def
insert_chunks_from_csv
(
csv_file
:
str
):
df
=
pd
.
read_csv
(
csv_file
)
required_cols
=
[
"Grade"
,
"Subject"
,
"Unit"
,
"Concept"
,
"Lesson"
,
"From page"
,
"To page"
,
"Chunk index"
,
"Chunk text"
,
"Is Arabic"
,
"Embedding"
]
for
col
in
required_cols
:
if
col
not
in
df
.
columns
:
raise
ValueError
(
f
"Missing required column in CSV: {col}"
)
conn
=
get_db_connection
()
cur
=
conn
.
cursor
()
insert_query
=
"""
INSERT INTO educational_chunks
(grade, subject, unit, concept, lesson,
from_page, to_page, chunk_index, chunk_text,
is_arabic, embedding)
VALUES (
%
s,
%
s,
%
s,
%
s,
%
s,
%
s,
%
s,
%
s,
%
s,
%
s,
%
s)
"""
batch_size
=
50
buffer
=
[]
for
idx
,
row
in
df
.
iterrows
():
try
:
embedding
=
json
.
loads
(
row
[
"Embedding"
])
# JSON → list
buffer
.
append
((
row
[
"Grade"
],
row
[
"Subject"
],
row
.
get
(
"Unit"
),
row
.
get
(
"Concept"
),
row
.
get
(
"Lesson"
),
int
(
row
[
"From page"
])
if
not
pd
.
isna
(
row
[
"From page"
])
else
None
,
int
(
row
[
"To page"
])
if
not
pd
.
isna
(
row
[
"To page"
])
else
None
,
int
(
row
[
"Chunk index"
]),
row
[
"Chunk text"
],
bool
(
row
[
"Is Arabic"
]),
embedding
))
except
Exception
as
e
:
print
(
f
"Skipping row {idx} due to error: {e}"
)
continue
if
len
(
buffer
)
>=
batch_size
:
cur
.
executemany
(
insert_query
,
buffer
)
conn
.
commit
()
print
(
f
"Inserted {len(buffer)} rows..."
)
buffer
=
[]
if
buffer
:
cur
.
executemany
(
insert_query
,
buffer
)
conn
.
commit
()
print
(
f
"Inserted final {len(buffer)} rows."
)
cur
.
close
()
conn
.
close
()
print
(
"All data inserted successfully."
)
if
__name__
==
"__main__"
:
csv_file
=
"Prime6_en_chunked_with_embeddings.csv"
insert_chunks_from_csv
(
csv_file
)
self_hosted_env/prime4_ar_embeddings.csv
0 → 100644
View file @
3d886bb2
This diff is collapsed.
Click to expand it.
self_hosted_env/prime6_ar_embeddings.csv
0 → 100644
View file @
3d886bb2
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment